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Abstract

This paper studies the heterogeneous energy cost and charging demand impact
of autonomous electric vehicle(EV) fleet under different ambient temperature. A
data-driven method is introduced to formulate a two-dimensional grid stochastic
energy consumption model for electric vehicles. The energy consumption model
aids in analyzing EV energy cost and describing uncertainties under variable
average vehicle trip speed and ambient temperature conditions. An integrated
eco-routing and optimal charging decision making framework is designed to
improve the capability of autonomous EV’s trip level energy management in a
shared fleet. The decision making process helps to find minimum energy cost
routes with consideration of charging strategies and travel time requirements.
By taking advantage of derived models and technologies, comprehensive case
studies are performed on a data-driven simulated transportation network in
New York City. Detailed results show us the heterogeneous energy impact and
charging demand under different ambient temperature. By giving the same
travel demand and charging station information, under the low and high ambient
temperature within each month, there exist more than 20% difference of overall
energy cost and 60% difference of charging demand. All studies will help to
construct sustainable infrastructure for autonomous EV fleet trip level energy
management in real world applications.
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1. Introduction

Increasing electric vehicle (EV) usage for accelerating transportation electri-
fication has crucial impacts on greenhouse gas emissions and energy dependency
(Palencia et al. (2016); Sioshansi and Denholm (2009); Eberle and Von Helmolt
(2010); Armaroli and Balzani (2011)). In order to improve the adoption of
electric vehicles, tremendous work is being performed to electrify powertrain
systems and the transportation system (Bilgin et al. (2015)). Recently more
than 600,000 plug-in vehicles are on road since 2010 market introduction(EDTA
(2017)). Accelerating EV adoption may be a key strategy for helping to achieve
transportation sustainability. Besides great progress in electric drive systems,
autonomous driving technologies are being developed by lots of automakers and
high-tech companies. They are trying to put forward the real-world application
of self-driving. Furthermore, automotive OEMs are combining autonomous driv-
ing technology with electric vehicles. For example, all Tesla cars being produced
now have hardware towards full autonomy (Tesla (2016)). General Motors is
also testing autonomous driving on its new Chevrolet Bolt (electrek (2017)).
Only a few of them are named here. There are several reasons that some self-
driving cars will be electric. First are the regulatory reasons, namely efficiency
and emission requirements. Then there are important engineering reasons that
electric vehicles are easier for computers to drive. And, of course, ride-hailing
or ride-sharing services will increasingly make up a higher percentage of daily
miles driven, and it will be easier, cheaper and safer to recharge an unmanned
car than to refuel one with gasoline. Therefore, car-sharing or car-hailing com-
panies plan to use both electric vehicles and autonomous driving as part of
their transportation network. Self-driving technology is an important aspect
to improve their service quality and reduce operation cost. Electrified vehicles
can help to improve energy efficiency. These two trends will work together to
improve the intelligence and sustainability of transportation system.

Accompanying the appearance of autonomous electric vehicle fleet in future
transportation system, driving and charging demand pattern will be very dif-
ferent from current electric vehicles. One discovered fact is that autonomous
vehicles increase vehicle miles traveled(VMT) by enabling non-drivers and also
may gain a decrease in their value of travel time (VOT) as time in the car can
be spent on other activities besides driving (van den Berg and Verhoef (2016)).
This fact may provide more opportunities for autonomous electric vehicles to
make energy-efficient driving strategies. On-board computer systems in au-
tonomous EVs can help them to make most of decisions, for example, routing
strategies and charging station selection, etc. Due to strong capabilities of de-
cision making, on-board computation and connectivity in autonomous systems,
autonomous electric vehicles have large potential to select energy-efficient routes
and to find best locations for charging actions during their itineraries. For elec-
tric vehicle fleet management, especially electric vehicles used in ride-sharing,
ride-hailing or taxi scenarios, it is valuable to design energy-efficient routing and
charging strategies in order to reduce fleet’s overall energy cost. Energy-efficient
routing and charging will not only increase the sustainability of fleet system, but



also reduce the operating cost, e.g. monetary cost for maintenance and purchas-
ing electricity, etc. Energy consumption behavior of autonomous electric vehicle
fleet will have much difference due to potential usage of new technologies. It
is crucial to understand energy-efficient routing and charging technologies and
their energy impact so as to improve the sustainability of future transportation
system.

This paper aims to study the energy impact of autonomous electric vehicle
fleet under different ambient temperature conditions. In order to achieve this
objective, two essential frameworks are developed for energy impact analysis:

First, a data-driven stochastic energy consumption prediction framework
for electric vehicles with regard to average vehicle speed within a given trip and
temperature. A stochastic model is necessary for energy impact analysis on EV
fleet. This model possessing statistical features can generalize various energy
consumption behaviors for a fleet of electric vehicles. A gridding method is
applied to achieve high-resolution understanding of uncertainties.

Second, an eco-routing and charging decision making framework for au-
tonomous electric vehicle fleet is proposed. Derived strategies can help au-
tonomous EVs to find the minimum energy cost routes and also perform charg-
ing actions if necessary. These strategies are designed under several realis-
tic constraints, for example, travel time cost, destination energy requirement
and also vehicle driving range, etc. Eco-routing and charging decision mak-
ing framework can provide a powerful tool of trip level energy management for
autonomous electric vehicle fleet.

Therefore, two proposed frameworks work together to simulate energy cost
behaviors of autonomous EV fleet and aid in studying potential energy impact
under ambient temperature.

The paper is organized as follows. A literature review is provided in Sec-
tion 2. Section 3 introduces a data-driven grid stochastic energy consumption
prediction framework. Section 4 introduces an integrated eco-routing and charg-
ing decision making framework. Detailed case studies related to energy impact
analysis with regard to ambient temperature are illustrated in Section 5. A
conclusion is provided in Section 6.

2. Literature Review

The ultimate objective of this paper is to study and understand energy
impact of future autonomous electric vehicle fleet under different ambient tem-
perature. In order to achieve it, two main parts are necessary: an EV energy
consumption prediction framework with consideration of average vehicle speed
and ambient temperature, and an automated eco-routing and charging decision
making framework for EV trip level energy management.

Energy cost prediction for electric vehicles has been studied from two main
aspects: the first main methodology is based on vehicle physical model, includ-
ing tractive effort models (Prins et al. (2013)), power-based energy consumption
models (Yiand Bauer (2017, 2016b); Fiori et al. (2016)) and energy consumption



model based on generic high-level specifications and technical characteristics
(Genikomsakis and Mitrentsis (2017)). The second main methodology utilizes
data analysis methods, including feature-based linear regression from historical
driving data (Ondruska and Posner (2014)), a systematic energy consumption
estimation approach based on driving conditions (Zhang and Yao (2015)), and
multiple linear regression methods based on real-world data (De Cauwer et al.
(2015); Chen et al. (2017a)). Physical models need high-resolution real-time
information to support accurate predictions. This type of model is not a good
choice for energy impact analysis on fleet system level, because they lack ca-
pability to model uncertainties of energy cost under variety of factors. Most
data driven methods in the literature don’t involve detailed inner relationships
between the energy cost and variety of factors. For example, there are heteroge-
neous characteristics of different energy consumption components (e.g. propul-
sion energy cost, regenerative energy, heater and air conditioner energy cost,
etc) under various vehicle speeds and temperature. The research in Liu et al.
(2017) only explores interactive effects of ambient temperature on overall en-
ergy cost. It didn’t investigate no detailed modeling of different components
and their uncertainties. To our best knowledge, previous methods didn’t model
uncertainties of energy cost in detail under realistic speed and ambient tem-
perature. These uncertainties are crucial to provide the capability of analyzing
potential energy impact under variety of factors in a fleet scenario. Energy con-
sumption model with consideration of uncertainties can generalize and simulate
the energy cost behaviors of different EVs(different cars of same make/model)
in a fleet. This is the main function of energy consumption model in this paper.

Much research has been done individually for eco-routing or charging de-
cision making. Due to the special characteristics in battery electric vehicles,
e.g. limited cruising range, long charge time and sparse coverage of charging
stations, lots of work has been introduced to minimize the energy consump-
tion for eco-routing. They have been covered in depth in Abousleiman and
Rawashdeh (2014); Sachenbacher et al. (2011); Jurik et al. (2014); Baum et al.
(2013); Sweda and Klabjan (2012); Wang et al. (2013); Fontana (2013); Zhu
et al. (2017); Yi and Bauer (2018). Most of these research can be divided
into two main categories, i.e. Dijkstra-like algorithms and optimization based
algorithms. Charging decision making for electric vehicles includes several as-
pects, e.g. the deployment of charging infrastructure (He et al. (2018); Chen
et al. (2017b); Xylia et al. (2017); Yang et al. (2017); Luo et al. (2017a,b); Dias
et al. (2017); Yi and Bauer (2016a); He et al. (2015, 2016); Giménez-Gaydou
et al. (2016); Frade et al. (2011); Tu et al. (2016); Ghamami et al. (2016); Li
et al. (2016); Dong et al. (2014), etc.), the analysis of charging behavior (Hu
et al. (2018); Arias et al. (2017); Arias and Bae (2016); Marmaras et al. (2017);
Latinopoulos et al. (2017); Yang et al. (2016); Birrell et al. (2015); Smart and
Schey (2012), etc.) and the design of charging strategies (Moon and Kim (2017);
Zhang et al. (2017); Yagcitekin and Uzunoglu (2016), etc.). The work related to
charging decision making in this paper is to design trip level strategies, includ-
ing charging station selection and amount of charged energy. An intelligent and
sustainable way to schedule charging actions is crucial to improve the driving



experience and reduce the range anxiety of electric vehicle users. Optimal charg-
ing decision making for a personal autonomous vehicle has been discussed in Yi
and Shirk (2018). There is some research on charging decision making in fleet
management system, for example the work in (Chen et al. (2016a), Pourazarm
et al. (2016)). It aims to make sure an EV fleet can always have enough energy
to perform services. However, this research doesn’t investigate decision making
by involving the eco-routing and autonomous driving setting.

With the emerging of autonomous driving and its application in electric
vehicles, the charging decision making should be taken over by vehicles. Au-
tonomous electric vehicles will require the capability to make charging decisions
according to the battery energy state, the travel demand and also the available
charging infrastructure. Automated electric vehicle charging stations will be-
come available in the future (Corbett and Maniaci (2013); Tesla (2017)). Some
works have touched this topic under the car-sharing situation. The work in Fag-
nant and Kockelman (2014) describes the design of an agent-based model for
shared autonomous vehicle (SAV) operations. Chen et al. (2016b) further ex-
plores the management of a fleet of shared autonomous electric vehicles (SAEVs)
in a regional, discrete-time, agent-based model. Although charging actions have
been touched, the discussion for charging decision making is relatively simple.
They don’t combine eco-routing with charging decision making together. This
is an important aspect for autonomous EV fleet management and improve the
entire system energy efficiency. For an autonomous EV in future car-sharing,
car-hailing or taxi fleet, it can be charged on its way to another pick-up loca-
tion. It is necessary to develop strategies for optimizing both eco-routing and
charging decision making simultaneously. Some previous research put efforts
on designing the optimal routing and charging for battery electric vehicles, as
shown in Pourazarm et al. (2016); Chen et al. (2016a). But they are limited to
rough energy consumption models without consideration of traffic and ambient
temperature. Their methods didn’t involve the heterogeneous charging power,
travel time and also energy state requirement. Furthermore, none of these re-
search has performed the energy impact analysis of eco-routing and charging
for autonomous electric vehicle fleet.

Our work aims to comprehensively understand the potential energy impact
of autonomous EV fleet with eco-routing and charging with regard to ambient
temperature. Main contributions are summarized as follows:

e Data-driven two-dimensional grid stochastic energy consumption frame-
work for emulating energy cost behaviors of fleet vehicles under different
ambient temperature: This framework is derived based on a historical EV
taxi dataset. It has the potential capability to simulate different EV en-
ergy cost behaviors in an autonomous EV fleet by taking advantage of
data-driven stochastic features.

e Integrated eco-routing and charging decision making framework for au-
tonomous EV fleet by considering travel time and energy state require-
ment: This framework is used to simulate the driving and charging be-
haviors in autonomous EV fleet system.



e Data-driven simulated transportation network and fleet travel pattern by
using EV taxi’s pick-up and drop-off information: The simulated network
and patterns are used as case study scenarios for energy impact analysis.

e Energy impact and charging demand analysis under different ambient tem-
perature by using a simulated autonomous EV fleet with proposed eco-
routing and charging strategies

3. Data-Driven Two-Dimensional Grid Stochastic Energy Consump-
tion Model

8.1. Nissan Leaf Taxi Data

The data for model development was collected in the Electric Vehicle Pilot
Program (Taxi and Commission (2013); INL (2016)). It provided an opportu-
nity for the Taxi and Limousine Commission, Nissan and the taxi industry to
gather information (both quantitative data and the personal experiences of real
New York taxi passengers, drivers and owners) so that we can evaluate what it
would take to bring about successful broader adoption of electric taxis. Several
2012 Nissan Leaf battery electric vehicles were provided to New York City taxi
fleets and owner-drivers to use in normal taxi service. Charging infrastructure
was available to the drivers. On-board electronic data logged from these vehicles
is the basis for the provided results. There are in total five Nissan Leafs in this
data collection and these data was collected between June 2013 and February
2015. Other detailed information about this data set can be found in Taxi and
Commission (2013); INL (2016). This EV taxi data set is definitely a great
opportunity for us to investigate the energy impact of future autonomous EV
fleet. Due to essential features of taxi transportation system, even though cur-
rent vehicles are transferred to autonomous driving systems, they will have the
similar travel behaviors that are determined by request demand from customers.
This means that we can utilize the pick-up and drop-off information to simulate
travel patterns of autonomous fleet. Furthermore, the collected data provides
detailed energy consumption information, which is very helpful to construct a
comprehensive prediction model for EV energy consumption.

Figure 1 illustrates the average trip-level energy cost per mile with regard to
average vehicle speed on each trip segment and also ambient temperature. In
the given data set, each trip has its distance information and travel time cost
between origin and destination. The average speed value within this trip can be
calculated from the distance divided by the travel time. Ambient temperature
means the environmental temperature, not the vehicle internal temperature
or battery internal temperature. It shows large uncertainties even by giving
specific average speed and temperature. However, the collected data has detailed
information to aid in constructing a comprehensive energy cost model.

The collected data for each trip segment includes a lot of detailed informa-
tion. The main features related to trip-level energy cost modeling and energy
impact evaluation include trip distance, trip time cost, pickup location, drop-off



=]
&
mile)

o
~
kWhy,

=]
w
Mile(

o J
)
Cost per

=}
o
Energy

40 -10

Figure 1: Energy cost per mile of Nissan Leaf Taxi with regard to average vehicle speed and

ambient temperature in New York City

location, ambient temperature, overall energy consumption, energy consump-
tion of heating, ventilation, and air conditioning (HVAC), and regenerative en-
ergy. The overall energy consumption can be divided into three sub components,
i.e. propulsion energy cost, HVAC energy cost and regenerative energy. Energy
consumption of electric vehicles depends on variety of factors, e.g. vehicle speed
and environmental conditions, etc. Among the environmental conditions, tem-
perature has large effect on EV energy consumption. The ambient temperature
will be involved into our modeling procedure. Therefore we have the following

equation to describe the energy cost for a given trip:
Eovg(v,T) = Ep(v,T) + Epvac(v,T) — Ereg(v) (1)

where v is the average vehicle speed along the trip and T is the ambient tem-
perature. This is based on detailed physical models of energy consumption in
(Yi and Bauer (2017)). Assume that the propulsion energy cost Ej,(v,T) and
HVAC energy cost Epyqc(v,T) depend on both of average vehicle speed and
ambient temperature. E,.4(v) is the regenerative braking energy. Regenerative
braking is an energy recovery mechanism which slows a vehicle by converting
its kinetic energy into a form which can be either used immediately or stored
until needed. The regenerative braking is a big advantage of electric vehicles to
improve the energy efficiency comparing to traditional gasoline vehicles. Equa-
tion (1) assumes regenerative brake energy value E,.4(v) is positive. Ejcq(v)
mainly depends on traffic condition and is modeled with regard to average ve-



hicle speed. Equation 1 assumes that three energy cost components are inde-
pendent and all of them contribute to the overall energy consumption. We will
provide the detailed models for all three components in the following sections.
These stochastic models are created from the real world data. Stochastic model
can generate ergodic samples to emulate different situations and then to perform
energy impact evaluation on fleet level.

8.2. Multi-Dimensional Gridding Method

The gridding method represents that an entire feasible space consisted of
several dependent variables is discretized into a bunch of sub-regions. Data
driven methods are performed individually on each sub-region. Each region can
be a k-dimensional space, where k is the number of dependent variables. Depen-
dent variables are selected or derived from available dataset. Generally higher
resolution of collected data (more specifically, energy consumption information
with more related conditions) will aid in providing a more accurate gridding
model. The following will provide a general description for gridding method
proposed in this paper.

The notation G’f‘[lv s (S) is used to represent a specific gridding stochastic
model. In this notatiah, k is the number of dimensions applied in this model.
n; is the number of discretized intervals along the i;;, dependent variable. A
larger value of n; can have a discretization with high resolution for 7;;, dependent
variable. § represents probability distribution cluster on all grids. Suppose the
coordinate of one grid is denoted by (o1, ..., 04, ..., 0 ), where 1 < 0; < n;. Then
the distribution set S = {S(,,,....0,)} has Hle n; different distributions. They
are underlying distributions that the data fits within all grids. These distribu-
tions can be estimated by using density estimation method. The general density
estimation method with underlying density function assumption is utilized in
this paper instead of kernel density estimation(KDE). KDE is a nonparametric
density estimator requiring no assumption that the underlying density function
is from a parametric family. However, it is better to utilize the general density
estimation/fitting if an obvious pattern of existing probability density function
can be found in the given data. It can provide more accurate model and is easy
for us to perform future calculations for sample generation. Figure 2 illustrates
an example of G2 . (S). It is a 2-D gridding method by considering two dif-
ferent dependent variables where ny = 4 and ng = 5 with |S| = 20. Therefore,
the entire range of average vehicle speed is divided into four different intervals
and the entire range of ambient temperature is divided into five different inter-
vals. In total 20 sub-regions are obtained and their corresponding models can
be constructed, e.g. G3,5(S(1,5)), G3x5(S(2,4)), ete. Each sub-region has a part
of data points from the entire original data set. Data points in each sub-region
are utilized to estimate the distribution of energy cost per mile within the given
average speed and temperature range.

The overall energy cost per mile can be divided into three independent parts:
the propulsion energy cost per mile, HVAC energy cost per mile and regenerative
brake energy per mile. The trip-level propulsion energy cost mainly depends on

10
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Figure 2: An example of 2-D Gridding Model

the average speed during this trip segment and ambient temperature conditions
(Temperature causes variation of powertrain efficiency), so it can be modeled as
G?  n,(Sp). The average vehicle speed and ambient temperature can have large
effect on HVAC energy cost. The model for HVAC energy cost per mile can be
described by G2 L xny (Sn). However, the regenerative brake energy only mainly
depends on the traffic situation, this means that a G}, (S;) model with regard
to average vehicle speed should be good to describe it. The accuracy of these
models depends on the amount of collected available data samples. But they
can be improved by continuing to collect data. If these models are utilized to
predict energy cost for a specific EV, each specific EV can have its own models.
These models can be updated in a real-time and adaptive manner by collecting
the unique data of each vehicle itself.

8.8. G}, (Sn) for HVAC Energy Consumption Model

Figure 3 illustrates the energy cost per mile of HVAC(heating, ventilation,
and air conditioning) with regard to trip average vehicle speed and ambient
temperature. Energy cost of HVAC has heterogeneous patterns under different
temperatures and average vehicle speed. Generally, it costs more energy by
HVAC under a very low or very high temperature. However, as shown Figure 3,
there are huge uncertainties for energy cost per mile and also very different
uncertainty distributions under various temperature and average speed values.
Due to the consideration of EV Taxi data, one phenomenon is that drivers often
turned HVAC off to save energy when no passengers were present. In order to
understand such uncertainties and their inherent distribution, the introduced
gridding method is applied on the investigated data.

It is clearly indicated in Figure 3 that the HVAC energy cost is influenced
by both ambient temperature and trip average speed. Generally, an extreme
temperature needs higher HVAC power consumption to maintain a comfortable
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Figure 3: HVAC energy cost per mile with regard to different average speed and ambient

temperature

in-vehicle environment. Due to the consideration of energy cost per mile, the
vehicle speed, which can determine the travel time cost for each mile, will impact
on the value of energy cost per mile. A G2 ., (S,) model is a reasonable
choice to provide a description for energy cost behavior of HVAC. Figure 4
shows analysis results of HVAC energy cost based on G%,5(S,) model. This
means that both the entire feasible ranges of vehicle speed and temperature
are divided into three intervals. Then this model has nine different grids with
|Sk| = 9. Each grid includes a subset of data from the entire dataset. Statistic
analysis is performed on each grid to get the potential probability distribution
for uncertainty description. Histogram analysis and density estimation show us
that exponential distribution is a good option to model the energy cost behavior
on each grid. This mean S(; jy ~ Exp(A]). Of course, each grid has its own
exponential distribution with )\g based on real data fitting. These heterogeneous
distributions provide comprehensive understanding of energy cost uncertainties.
Figure 4 also illustrates average value for HVAC energy cost per mile within each
grid. Given a temperature interval, the HVAC energy cost per mile becomes
smaller when vehicle speed becomes larger. Two reasons account for this fact:
energy cost per mile is a function of time and HVAC power is also a function
of vehicle speed, for example, more power to heat when driving faster in very
cold air. Given a vehicle speed interval, the energy cost per mile approaches
the minimum value around 10°C' to 20°C, which is the middle interval in this

particular case.
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Figure 4: Gg «3(Sk) model for HVAC energy cost per mile with regard to different temperature
and vehicle speeds

What we have in Figure 4 is just a demonstration for our methodology. If
more data samples can be collected under different values of average vehicle
speed and ambient temperature, the number of intervals along each direction
can be increased so as to obtain more grids and then a model with higher
resolution for HVAC energy consumption.

3.4. G}Ll(Sr) Model for Regenerative Brake Energy

Regenerative brake energy is the energy recovered by the brake regenera-
tion system in EVs. It has little dependence on temperature condition. So it
is reasonable to model regenerative brake energy only with regard to average
speed over a trip. Figure 5 provides the regenerative brake energy per mile with
regard to average vehicle speed. It is easy to see that the average regenerative
brake energy per mile decreases when vehicle speed increases. A lower aver-
age speed usually results from a city driving with more traffic congestion and
regulations. More deceleration operations of EVs occur. These decelerations
contribute more to the regenerative energy. However, the regenerative energy
has different uncertainties with regard to average vehicle speed. It is valuable to
model the uncertainties in order to provide a better representation of random
behaviors for regenerative brake energy under given trip average speed.

Regenerative brake energy mainly depends on the traffic situation, which can
be indicated by the average vehicle speed in some extent. Therefore, a G}, (S;)
model can be utilized to describe the regenerative energy behavior. Figure 6
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demonstrates a G}(S,) model for regenerative brake energy based on the Nissan
Leaf taxi data. The corresponding statistic analysis results are illustrated. His-
togram analyses show us that uncertainty of regenerative energy on each grid
can be modeled by log-normal distribution, i.e. S; ~ Log-Normal(u;, ;). The
density estimation is performed on each grid to obtain key parameters (mean
value p; and standard deviation o;) of log-normal distributions. Different val-
ues of mean and variance are obtained on each grid. Generally, the mean value
of regenerative brake energy becomes smaller when trip average vehicle speed
becomes larger.

The resolution of the introduced model is determined by the number of
intervals along the entire range of average vehicle speed and also available data
samples within each interval. A dense data set that has abundant samples along
the entire average speed range can construct high resolution G, L (Sr) model by
utilizing more intervals, for example larger n; and more accurate probability
density function estimation.

3.5. G? (Sp) Model for Propulsion Energy Consumption

niXng

Propulsion energy cost of electric vehicles is influenced by traffic condition
and also ambient temperature. However, traffic condition can have a key in-
fluence on propulsion energy consumption. Ambient temperature has effect on
the efficiency of electric powertrain system, especially battery efficiency. Then
the temperature provides indirect impacts on propulsion energy consumption.
Figure 7 provides scattering plot to describe the distribution of propulsion en-
ergy consumption under different ambient temperature and trip average vehicle
speeds.

In order to understand heterogeneous features of propulsion energy cost un-
der different vehicle speed and ambient temperature, a G2 . (S,) model is
introduced. Figure 8 illustrates a result of G3,5(S,) model based on the Nissan
Leaf taxi data. Both of the temperature and vehicle speed range are divided into

14



Figure 6:
speeds

Speed: [2.00, 12.45]mph
Mean:0.145, Variance:0.088(Log-normal Distribution)

400
0
K
a
g 300
w
=
o
:1_) 200
Qo
€
=3
2 100
070.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Regenerative Energy per Mile(kWh/mile)
Speed: [22.90, 33.36]mph
Mean:0.076, Variance:0.112(Log-normal Distribution)
30
0
o
525
€
& 20
el
(<}
15
o
Qo
€10
S
z
5
M

°

I
0.10 0.15 020 025 030 035

Regenerative Energy per Mile(kWh/mile)

0.05

G1(S;) model for regenerative energy per mile with

Number of Samples

Number of Samples

Speed: [12.45, 22.90]mph
Mean:0.114, Variance:0.134(Log-normal Distribution)

s ||
0
5
0
5
0
5
o

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Regenerative Energy per Mile(kWh/mile)

Speed: [33.36, 43.81]mph
Mean:0.046, Variance:1.460(Log-normal Distribution)

-

0.00 0.05 0.10 015 020 0.25 030 035

Regenerative Energy per Mile(kWh/mile)

regard to different average

Figure 7: Distribution of propulsion energy cost per mile with regard to average speed and
ambient temperature

15



Speed: [2.00, 15.94]mph Temperature: [-11.28, 5.77]°C Speed: [2.00, 15.94)mph Temperature: [5.77, 22.83]° C Speed: [2.00, 15.94]mph Temperature: [22.83, 39.88]° C
Mean:0.307, Variance:0.056 Mean:0.314, Variance:0.048 Mean:0.305, Variance:0.055

g

8 &

Number of Samples
Number of Samples

g

°

00 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06
p Energy Cost per p Energy Cost per

01 3 04 05 06
Propulsion Energy Cost per Mile(kWh/mile)

Speed: [15.94, 29.87]mph Temperature: [-11.28, 5.77]°C Speed: [15.94, 29.87]mph Temperature: [5.77,22.83]°C  Speed: [15.94, 29.87]mph Temperature: [22.83, 39.88]° C

Mean:0.255, Variance:0.195 Mean:0.259, Variance:0.068 Mean:0.247, Variance:0.073
g 20 2 e
K S 60 8
s s 5 40
E1s 3 £
s s &
b4 a0 L
5 10 5 5
] g g
€ s €20 €
5 5 S10
2 2 2
0- 0- 0-
oo o1 02 03 04 os oo o1 02 03 04 05 0o 01 02 03 04
Propulsion Energy Cost per Mile(kWh/mile) pulsion Energy Cost per i p Energy Cost per
Speed: [29.87, 43.81]mph Temperature: [-11.28,5.771°C  Speed: [29.87, 43.81]mph Temperature: [5.77, 22.83]°C  Speed: [29.87, 43.81]mph Temperature: [22.83, 39.88]°C
Mean:0.270, Variance:0.021 Mean:0.209, Variance:0.848 Mean:0.212, Variance:0.400
10 8 3.0
4] 8 8
208 s 82
£ E6 £
s 5 § 2.0
V06 b [
5 54 B 15
g 04 g g
H 2 210
oz £2 5
=z =z z 05
0.0- 0- 0.0+
022 024 026 028 030 032 034 000 005 010 015 020 025 030 035 000 005 010 015 020 025 030
Propulsion Energy Cost per Mile(kWh/mile) pulsion Energy Cost per i p Energy Cost per
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speed and ambient temperature

three subsets, which generates a 3 x 3 grid network with 9 grids in total. Fig-
ure 8 illustrates that energy cost per mile in each grid cell follows a log-normal
distribution, i.e. S(; ;) ~ Log-Normal(y],07). Density estimation is performed
to obtain all log-normal distributions with the corresponding values of mean and
standard variance. The provided result doesn’t have a good estimation within
high speed interval due to small size of samples in Nissan Leaf taxi dataset.
However, the proposed methodology is adjustable to fit datasets with different
resolutions. As discussions in other grid models, higher resolution dataset with
abundant samples along dependent variables can aid in constructing a better
grid model with more cells and obtain comprehensive distribution information.

3.6. Grid Stochastic Model for Overall Energy Consumption

Potential distributions can be derived to construct grid stochastic models.
The overall energy cost per mile for electric vehicles can be modeled as:

Energy Cost Per Mile(kWh/mile)
= Gil X ko (Sp) + Gznl Xmo (Sh) - G’rlll (ST) (2)
|y i— ———
Propulsion Energy Cost HVAC Energy Cost  Regenerative Energy

where G}, 1, (Sp), G (Sk) and G}, (S,) is used to model the energy cost

mi1 Xmsa
per mile. kq, m, and n; are the numbers of intervals for average vehicle speed. ko
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and my are the numbers of intervals for ambient temperature. S, is a log-normal
distribution cluster with k; x k5 elements in total and Sf ~ Log—Normal(,u{ , Ug );
Sp, is an exponential distribution cluster with mj X ms elements in total and Sf ~
Exp(ug); S, is a log-normal distribution cluster with n; elements in total and
S; ~ Log-Normal(u;, 0;). In order to obtain a data-driven grid stochastic energy
consumption model for a specific electric vehicle, the following information needs
to be determined or learned from the real world data:

e Grid size and number: In proposed models, two different independent
variables (i.e. average vehicle speed and ambient temperature) are uti-
lized according to historical data knowledge. The grid size and number
is determined by the interval size and number along each dependent vari-
able. Generally, high resolution data can provide more grids with small
grid size. The selection of grid size and number in Figure 4, 6 and 8
are just examples for convenience to demonstrate the methodology. More
smaller grids are utilized in following case studies in order to construct a
higher resolution grid stochastic model for energy impact evaluation.

e Probability distribution within each grid cell: Density estimation is per-
formed in each grid cell based on the assigned distribution format. The
assigned distribution is determined according to preliminary analyses.
The pre-defined format of potential distribution helps to find more ac-
curate mathematical model to describe uncertainties of energy consump-
tion. Each grid cell has its unique distribution to describe uncertainties
of energy cost under average speed and ambient temperature.

Remark: Energy consumption model formulation in this section is derived
based on Nissan Leaf Taxi dataset. The obtained specific model parameters can
only be used to simulate the energy cost behaviors of Nissan Leaf in New York.
However, battery electric vehicles have similar energy cost behaviors. Therefore,
the introduced methodology should work for any brand of electric vehicles, which
should follow the similar distribution formats as what we analyzed from the data
of Nissan Leaf in Equation (2). Parameters for distributions and grid size and
number depend on available data for specific electric vehicles.

4. Eco-Routing and Charging Decision Making

Autonomous electric vehicle fleet has great potential applications in ride-
sharing, ride-hailing or taxi system, as discussed in Introduction section. An
autonomous electric vehicle fleet system can be managed by central system con-
trollers in the future. A central controller should make sure the controlled EVs
always have enough energy to complete customers’ service request and they will
not spend time on charging when customers are on board. Therefore, central
controller should have the capability to collect real-time information, for ex-
ample, availability, energy states and customers’ travel request, etc. Central
controllers will optimize their operations to find the best available EV to satisfy
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a travel request. The selected EV will travel to the requested pick-up location
under a given time constraint. If an EV is idle and has lower energy state, a
charging action is necessary before its next pick-up action. Scheduling algo-
rithms and central controller design are not the focus of our paper. We will
study control strategies in our future work. In this paper, assume that central
controllers exist and EVs can receive commands that include origin and desti-
nation information, energy state requirement for next trip and maximum travel
time requirement. Our paper focuses on designing optimization models and
algorithms to help autonomous EVs find the best energy efficient routing and
charging strategies(i.e. charging station selection, amount of charged energy)
by considering constraints received from central controllers.

4.1. Optimal Decision Making Model

We consider a road network modeled as a directed graph G = (N, .A) with
N =1,...,n and |A] = m. Node i € N represents a node in the road network.
It can be a normal node or a node with charging station. (i,5) € A is an
arc(link) connecting node i to j. We also define I(7) to be the set of start nodes
of arcs that are incoming to node 4 and define O(7) to be the set of end nodes
of arcs that are outgoing from node i. They are I(i) = {j € N|(j,i) € A}
and O(i) = {j € N|(i,j) € A}. For each arc (i,j) € A, there are two cost
parameters: the required traveling time t;; and required energy consumption
ei; on this arc. Note the ¢;; > 0 (if nodes ¢ and j are not connected, then
t;j = +00). E;; is allowed to be negative due to potential energy recuperation
effect. E;; depends on traffic and ambient temperature.

Here we are interested in a single-origin-single-destination vehicle routing
problem. Assume the origin is node o and destination is node d. Denote the
selection of arc (4,7) by x;; € {0,1}, 4,5 € N. P, is the charging power at node
t. If node ¢ has no charging station, we set P; = 0, otherwise P; is determined by
the charging level(e.g. Level 2 charging station with P; = 6.6kW and DC fast
charging station with P; = 50kW). ¢; is the time when arriving at node i. The
introduced model assumes to know the initial time at origin ¢, and the required
latest time at destination t4. This information provides the time constraint in
the routing and charging decision making. Denote ¢ as the charging time cost
at node i. Usually ¢ = 0 if there is no charging station at node i. F; is the
energy state at node i before charging action. FE; needs to be less than the
battery capacity C,. We have the lower bound of energy requirement E.., at
destination node d. For all E}, j € O(i), we have

E; = Z (EZ' +téR — Eij)l‘ij, Tij € {0, 1} (3)
i€l(j)

The problem objective is to determine a path from origin o to destination d,
as well as recharging time at each intermediate charging station node, so as to
minimize the total energy cost by satisfying the travel time and final energy
state requirements. We formulate an optimization problem as follows:
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N N
min Z Z Eijxij (4&)

T =1
S.t. Z Tij — Z Tj; = b (4b)
jeo®) jeI(i)

bo =1, by = —1, b; = 0 when i € N'/{o,d} (4c)
Ej= Y (Ei+t.P;— Eij)xy; j€N/{o} (4d)

i€l(j)
N N N )
to+ D> b+ Y th <ty (4e)
i=1j=1 i=1
Ep<E <G, (4f)
0<t:<MP; (4g)
Tij = 0 or 1 (4h)
Ey > Ereq (41

The objective function (4a) is the overall energy cost for selected route.
The constraints (4b) and (4c) stand for the flow conservation, which implies
that only one path starting from node ¢ can be selected, i.e. Zjeo(i) 255 < L
b, = 1 means there is no incoming arc for the origin. by = —1 means there
is no outgoing arc for the destination. Constraint (4d) represents the vehicle’s
energy dynamics. It provides the energy state transition from the node ¢ to
node j. The energy state at origin assumes to be known. Constraint (4e) is
the overall time constraint for the selected route. The summation of travel time
cost and charging time cost should be smaller than t; — t,, which is the given
time cost upper bound. Constraint (4f) provides the lower bound and upper
bound of battery energy state at each node i. The lower bound FEj, describes
the lowest energy level that vehicles can reach before charging actions. It is
straight forward that upper bound is the battery capacity C,. Constraint (4g)
provides bounds for charging time and illustrate the charging behavior at node
1. M is a large positive number. The upper bound of charging time at node i is
determined by charging power. If P; = 0(no charging station at node ), then
M P; = 0 makes sure that no charging action occurs at node i. Constraint (4i)
is the energy state requirement at destination, it should be larger than E,.,.
E,¢q is determined by the energy requirement of next delivery service. It may
be larger than the energy state at origin.

In Equation (4), the objective function is a linear function. We have the re-
quired decision variables z;;s and t's. z;;s are binary variables. Constraint (4d)
is a nonlinear function. all other constraints are linear constraints. Therefore,
the proposed decision making model is a mixed integer nonlinear programming
problem. Many commercial or open source solvers can be used to solve Equation
(4), e.g. CPLEX, SCIP, etc. We utilize the SCIP to provide optimal routing
and charging decision making for following simulations and case studies.
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Figure 9: A simulated road network

The overall decision-making process includes two steps: First, get the nec-
essary road network between the origin and destination and calculate the en-
ergy cost on road segment under variety of factors, e.g. traffic, temperature,
road grade and powertrain type, etc. Second, populate and solve the optimal
decision-making model in Equation (4) based on the road network and energy
cost information. Therefore, the functionality of introduced optimal decision-
making model is independent to energy related realistic conditions.

In order to get an eco-routing strategy, all related information is necessary
to be input at the beginning of decision making. From this aspect, the proposed
eco-routing algorithm is under static assumption. However, it is convenient to
consider the dynamics of traffic information by performing eco-routing decision
making in a receding horizon manner. We can run the introduced eco-routing al-
gorithm for each time step. Before rerunning this algorithm, the current vehicle
location information and latest traffic information can be obtained to calculate
the up-to-date travel time and energy consumption on each road segment. By
using these real-time information, this eco-routing model can provide new rout-
ing strategies within each time step. The length of time step is determined
by the dynamics of real-time traffic information. This type of receding horizon
decision making strategy is applied in most of existing routing engines. Our
proposed model can also use the same strategy to improve its dynamical and
real-time features.

4.2. Functionality Simulations

This section will utilize a simple road network in Figure 9 to demonstrate
the utility of introduced decision making model in Equation (4). The differ-
ence of optimal routing and charging strategies under various requirements and
situations are checked.

There are 13 nodes and the corresponding arcs as shown in Figure 9. For each
arc, the distance information is provided by using the unit of mile. The origin is
node 1 and destination is node 13. We only focus on the algorithm functionality
here. More detailed case studies are in the following section. Assume that
electric vehicles with battery capacity 24kW h have constant speed of 40mph on
each arc and have the constant energy consumption model of 0.3kWh/mile. If
we don’t have the charging requirement or time constraint, the optimal routing
strategy should be the same as that obtained by minimum distance algorithm.
We have the following six different simulated cases and their results are shown
in Figure 10.
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Case 1: There is no charging station in the simulated road network. EV
has the enough initial energy of 20kWh at original node 1. We don’t make
constraint for the required energy at destination node 13. Therefore, this case
is equivalent to the minimum distance routing. We have the optimal result as
shown in Figure 10. The final energy state at node 13 is 12.8kWh. This case
can be used as a base line to show the difference when other constraints are
required in the decision making process.

Case 2, Case 3 and Case 4: A DC fast charging station is located at node
3, 7 and 11, respectively. They have maximum charging power of 50kW. The
initial energy state at original node 1 is 10kWh. The required energy state at
destination node 13 is at least 20kWh. So it is necessary to charge the vehicle
to make sure it has the required energy state at destination. The energy states
at origin and destination are selected randomly. Any other values work for this
simulation. We just use an energy state value at destination which is larger
than that at origin to check the functionality of charging decision making in the
proposed algorithm. The results show that they have different optimal routing
strategies. The vehicle takes t3 = 0.344h at node 3 in Case 2, t7 = 0.35h at node
7 in Case 3 and t.! = 0.362h at node 11 in Case =4, respectively, to perform
charging action in order to satisfy the energy demand. The different locations of
charging stations cause the difference of optimal routing and potential charging
time.

Case 5 and Case 6: Two charging stations with different charging levels
are located in the road network. The charging station at node 3 is a Level 2
charging station with maximum charging power of 6.65W. The charging station
at node 10 is a DC fast charging station with maximum charging power of 50kW .
In both cases, we assume the initial energy state is 10kWh and required energy
state at destination is at least 20kWh. In Case 5, we assume that the overall
travel and charging time cost must be less than 2h. In Case 6, the overall
travel and charging time cost can be less than 5h. Based on the different time
cost requirements, we have obtained different optimal strategies. When EV has
enough time to get the energy in Level 2 charging station, it will select the route
with less overall energy cost.

5. Case Studies for Energy Impact Evaluation

In this section, the functionality of eco-routing and charging framework will
be studied by using real-world data. Based on pick-up and drop-off informa-
tion in the collected New York EV taxi dataset, a transportation network and
simulated travel patterns will be constructed for case studies. According to the
introduced stochastic energy consumption models for electric vehicles, compre-
hensive case studies will be performed to investigate potential heterogeneous
energy impact (including energy cost and charging demand) of autonomous EV
fleet under different ambient temperature conditions.
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Figure 10: Optimal routes for six different simulation cases

5.1. Transportation Network for Case Studies

Figure 11 illustrates the longitude and latitude information of all pick-up lo-
cations in New York EV taxi dataset. We can see that most of pick-up locations
are in Manhattan. The drop-off information is not provided here, because both
of pick-up and drop-off locations have very similar patterns, especially in Man-
hattan area. Case studies in this section only focus on the area of Manhattan.
The pick-up location information is detailed enough to represent appearance
locations of EV fleet in Manhattan area. These location information can help
to construct the nodes in the transportation network. The dataset only pro-
vides the trip information with pairs of pick-up and drop-off location. In order
to analyze the energy impact, a connected itinerary with several trip segments
is necessary for each EV in the fleet. This is because we need to investigate
the energy consumption and charging behavior. Only a long itinerary can be
taken to have both enough energy cost and charging necessity. It has no way
to directly utilize pairs of pick-up and drop-off locations from given data set to
construct the required transportation network. It is necessary to process these
location information so as to obtain an elegant transportation network that
can be cooperated with introduced eco-routing and charging decision making
models.

K-means clustering algorithm is utilized to find centroids of all locations in
Figure 11 for transportation network construction. This clustering algorithm
creates some centroids to represent the nearby location information. There are
20 centroids from k-means algorithm shown in Figure 11. We will only consider
the 15 centroids in Manhattan area in our case studies. The specific latitude and
longitude information for these 15 centroids are shown in Table 1. The number
of centroids is determined by the requirement of number of road network nodes
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Table 1: Longitude and latitude information of centroids

Node | (LONG, LAT) | Node | (LONG, LAT) | Node | (LONG, LAT)

1 | (-74.009,40.712) | 2 | (-74.004,40.743) | 3 | (-74.000,40.727)
4 | (-73.993,40.760) | 5 | (-73.991,40.749) | 6 | (-73.988,40.733)
7 | (-73.985,40.724) | 8 | (-73.983,40.763) | 9 | (-73.977,40.749)
10 | (-73,982,40.777) | 11 | (-73.970,40.760) | 12 | (-73.974,40.789)
13 | (-73.961,40.771) | 14 | (-73.953,40.779) | 15 | (-73.953,40.809)

in the transportation network. In our case studies, a transportation network
with 15 nodes supposes to be applied. Larger number of road network nodes
can describe more detailed of transportation patterns.

Figure 12 illustrates the obtained 15 centroids on the Google Maps of Man-
hattan. It also provides the location information of two realistic DC fast charg-
ing stations in Manhattan, which are Node 16 and 17. There are a lot of Level
1 and Level 2 charging stations in this area and EVs can perform charging
actions in them. However, only the autonomous electric vehicle taxi fleet is
considered in our case studies. DC fast charging stations help the autonomous
EV fleet reduce charging time and increase available service time. Assume that
all charging actions will be scheduled to these two charging stations according
to the introduced eco-routing and charging decision making algorithm. Dur-
ing following simulations, only the location information of two existing public
DC fast charging station is utilized and these charging stations are assumed to
have unlimited service capability. In reality, for a small autonomous EV fleet
equipped with two large charging stations, maybe it works for all charging re-
quirements. When the size of autonomous EV fleet increases, the number of
charging stations are required to increase simultaneously in order to reduce the
time cost of charging actions. Following results are only used to demonstrate
the functionality of introduced algorithms and models. They are preliminary
results to understand the energy and charging demand of future autonomous
EV fleet. In order to simulate more realistic situations, more detailed modelings
not only for autonomous vehicles but also for charging infrastructure system,
are necessary in the future work.

We have introduced a transportation network for our case studies in Fig-
ure 12. Distance values of arcs in Figure 12 are obtained by using Google Maps.
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Figure 12: A simulated road network for energy impact evaluation of autonomous EV fleet in
New York City

We utilize the Google Maps APIs to determine the realistic driving distance
between a pair of origin and destination. We take use of input O-D information
and use the Directions API with ”driving” mode in Google Maps APIs to obtain
the corresponding driving distance, which is determined by the route that has
the minimum driving distance from all provided alternative routes in Google
Maps. However, responses of Google Map API depends on when the query is
made. Different time may get different response results. In following simula-
tions, an average value of driving distance for each pair of origin and destination
pair is utilized. This average value is obtained by making queries under sev-
eral different time slots within a day. This is because simulations in this paper
focus on the effect of ambient temperature and a transportation network with
constant but realistic driving distance can reduce effects from other factors. It
is good choice to understand the effect only from the ambient temperature.

5.2. Case Studies of a Single Trip

Case studies of a single trip have been performed to demonstrate the func-
tionality of the introduced eco-routing and charging decision making frame-
work. Detailed conditions and corresponding results for several cases are shown
in Table 2. Two O-D (Origin-Destination) trips with two different energy re-
quirements are investigated. We can see that totally different optimal routes
are selected. When an EV has enough energy to finish the requested trip and
satisfy the requirement at destination at the same time, for example, as shown
in Scenario 2, the optimal route with minimum energy consumption will not
go through charging station node. However, if the energy requirement at desti-
nation is high, it is necessary to perform a charging action during the routing.
From Scenario 1, we have seen that both of optimal routes include charging
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Table 2: Results for single trip studies

Scenario 1 Scenario 2
E, =10kWh E, =20kWh
Eq > 20kWh Ey > 10EWh
(Origin,Destination) Optimal Route Optimal Route
(1, 15) 1-+2—-16—10—12—15 1-2—10—12—15
Charged energy:15.68kWh | Charged energy:0kWh
(13,7) 13—=11—=17—-6—7 13—11—-9—-7
Charged energy:11.5kWh | Charged energy:0kWh

station nodes. Even though they have the same final energy state requirement,
different energy has been charged due to their energy cost on different routes.

5.3. Generation of Itineraries

In order to study the energy impact of energy cost and charging demand,
a long itinerary for each EV in the fleet should be considered. The EV taxi
data that we have can help to generate itineraries by appropriate statistical
analysis. In order to generate reasonable itineraries, we have constructed the
occurrence probability model in Figure 13 and vehicle speed distribution in
Figure 14. The occurrence probability model describes how often or in what
probability EVs appear in each centroid. It is the analysis result of pick-up
distribution at each centroid based on k-means method from EV taxi data. The
probability distribution can be used to keep the occurrence of each node in
generated itineraries. For example, more itineraries of EV taxis may include
location 7 due to the maximum occurrence probability. Figure 14 shows the
probability density function of average speed of each road segment in Manhattan
area. This distribution is based on real average speed in the EV taxi data set.
Due to the heavy traffic in Manhattan area, the average vehicle speed is very low.
By using this model, a randomly generated speed value is assigned on each road
segment. However, the distribution model for average vehicle speed in Figure 14
cannot provide exact speed information on each specific road segment. Only
statistic features of vehicle speed distribution can be preserved. This works for
a system level simulation.

We utilize procedures in Algorithm 1 to generate itineraries for case studies.
An itinerary here consists of several consecutive trip segments. Each trip seg-
ment has an origin-destination pair. Algorithm 1 can generate a set of itineraries
for a fleet with IV, autonomous electric vehicles. The itinerary for each EV has
Nr trip segments. The output of Algorithm 1 is a connection matrix Cj; with
dimension N, x Np. Each row in C; represents a simulated itinerary for one au-
tonomous vehicle. Each element represents the assigned visited location during
an itinerary. The first column in C'; includes origins for all vehicles’ itineraries.
The constructed distribution models in Figure 13 and 14 are utilized to gen-
erate samples for next destination and average vehicle speed on each O-D trip
segment.
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Algorithm 1: Itinerary Generation

Input: Vehicle Number: N,, Trip Segment Number: Np

Output: N, x Ny connection matrix: Cpy

fori=1:N, do

| Cum(i,1) = Sample(Occurrence Probability Model)
fori=1:N, do
for j =2: Nr do
TmpNode = Sample(Occurrence Probability Model)
while TmpNode == C;(i,5 — 1) do
| TmpNode = Sample(Occurrence Probability Model)

Cn(i,7) = TmpNode

5.4. Energy Impact Evaluation on Ambient Temperature

By using the introduced transportation network and simulated itineraries,
an energy impact evaluation with regard to ambient temperature has been in-
vestigated. Figure 15 provides both of overall energy cost and charging demand
for both charging stations at Node 16 and 17 under different ambient temper-
ature. Figure 15 is obtained by studying itineraries of 100 EVs(an itinerary
for each EV has 100 trip segments) generated according to Algorithm 1. EVs
make decisions of routing and charging for each trip segment according to the
introduced eco-routing and charging decision making framework. Assume the
initial energy state at the beginning of each itinerary is 20kWh. After a trip
segment is finished, if the energy state is less than 5kWh, EVs need to perform
charging actions during the next trip and make sure the energy state goes back
to at least 20kW h. Here the low bound of 55Wh is just an example in our case
studies. In real situations, this lower bound is determined by the realistic av-
erage travel demand for trip segments and also charging station locations. The
initial energy state and lower bound for recharged energy state, i.e. 20kWh, is
determined by the EV battery capacity. Nissan Leaf is used in our studies, so
a bound of 20kWh is utilized.

Results in Figure 15 illustrate that both overall energy consumption and
charging demand vary much under different ambient temperature conditions.
The energy consumption and charging demand are smallest around 10°C' to
20°C'. Much more energy is consumed under the cold and hot weather. This is
due to HVAC energy consumption and also the powertrain efficiency. Meanwhile
more charged energy is necessary because of more energy consumed. Generally,
the charging demand of Node 17 is larger than that in Node 16. We don’t con-
sider the capacity of charging station and assume charging stations can satisfy
all charging requirements. Under this assumption, derived results show that
charging stations in a specific transportation network receive different charging
demand requests. This kind of difference is determined by the mobility pattern
of autonomous EV fleet. It is valuable and important to understand the differ-
ence of charging demand at different charging stations. Obtained results can
help to determine the charging capability of charging stations, e.g. number of
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Figure 15: Overall energy cost and charging demand under different ambient temperature

Table 3: Temperature information in New York City

Month | Temperature(°C) | Month | Temperature(°C)
(Low, High) (Low, High)
Jan (3.1, 3.8) Feb (1.9, 5.5)
Mar (1.9, 9.9) Apr (6.9, 15.7)
May (126, 21.5) Jun (17.7, 26.3)
Jul (21, 29.3) Aug (20.3, 284)
Sep (16.3, 24.4) Oct (10.1, 18.3)
Nov (5.1, 12.3) Dec (-0.1, 6.6)

charging points and maximum charging power, etc., and also understand the
impact on power grid.

A more valuable evaluation of energy impact for autonomous EV fleet is
to study the energy cost and charging demand with regard to different time
period, because different time may have different temperature in a long time
scale. It is worthy seeing the energy impact trend along different months in a
whole year. Table 3 provides the average low and high temperature within each
month in New York City. We utilize the same settings, for example, the same
number of vehicles and itineraries with the same travel patterns. We study the
energy impact under different ambient temperature values within each month.
In following results, overall energy cost or charging demand has three different
values within each month, i.e. values of energy cost or charging demand under
low and high temperature and the average value of these two obtained energy
cost or charging demand.

Figure 16 illustrates the overall energy consumption under average lower
temperature and high temperature within each month. The corresponding av-
erage overall energy consumption in different months is provided too. From
the results, it is obvious to notice that EV fleet has much smaller energy con-
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Figure 16: Overall energy cost within each month for a given transportation demand

sumption in April and October. This is due to the mild temperature in April
and October. According to the introduced energy consumption model, more
energy is needed under very low or high temperature because of energy cost
from HVAC. The less requirement of HVAC usage under mild temperature re-
sults in much less overall energy demand in these two months. Therefore, EVs
in months with very low temperature consume more energy by the same fleet
due to the more demand and higher power of HVAC usage. Cold weather has
bigger effect on energy consumption of autonomous EV fleet.

Figure 17 and 18 illustrate the charging demand in charging stations of Node
16 and 17, respectively. Like the overall energy consumption, both results pro-
vide the charging demand at average low temperature and high temperature
within each month. The average charging demand within each month is cal-
culated, respectively. For charging station Node 16, it has smaller charging
demand in April and September. For charging station Node 17, it has smaller
charging demand in May and October. These charging demand valleys result
from small energy demand in April, May, September and October as shown in
Figure 16. The overall charging demand in these two charging stations should
equal to the energy demand within each month. Both charging stations demon-
strate heterogeneous charging demand patterns. Generally charging station
Node 17 receives more charging demand than charging station Node 16. Since
we assume that both charging stations have the same features, e.g. charging
power and enough charging points for all charging requests, the difference of
charging demand is caused by the specific locations of charging stations and
also the realistic travel patterns of autonomous EV fleet. This is because that
the introduced charging decision making algorithm selects charging station and
decide the amount of charged energy according to locations of charging stations
and current battery energy state. The location difference of these two charging
stations and energy demand within different months make Node 16 and 17 have
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various dynamic charging demand patterns.

In order to understand how large the effect of ambient temperature condi-
tion on energy and charging demand, we look into the difference in percentage
within each month between high and low temperature. We propose the following
equation to calculate the difference in percentage within each month.

Max_value — Min_val
Percentage = ax-va l,le -Vae 100% (5)
Min_value

where Max_value and Min_value are the maximum and minimum values of en-
ergy cost or charging demand under both low and high temperature within each
month, respectively.

Figure 19 illustrates all percentages for overall energy cost and charging
demand within each month. For overall energy cost, the maximum difference
in percentage is around 20%, which occurs in very cold or very hot weather.
Patterns of charging demand in these two charging stations are very different.
The dynamics of charging demand along different months in Node 16 is much
larger than that in Node 17. The maximum difference in percentage can reach
about 60%. This kind of difference should be a huge challenge for energy supply
of charging station. In our simulations, only two DC fast charging stations Node
16 and 17 are utilized. The temperature change causes different energy cost
patterns. The difference of energy demand results in different charging strategies
that are derived by the introduced charging decision making algorithm. The
charging strategies may select very different charging stations and then cause
the imbalance between the charging demand in Node 16 and 17. Sometimes
most of them select the same charging station to perform charging actions. This
imbalance consecutively results in heterogeneous charging demand patterns in
these two charging stations and even some large peak values as shown in Figure
19.
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All results demonstrate that, even though the travel demand and pattern
is the same, the energy cost and corresponding charging demand is very het-
erogeneous within different months along the whole year. All results show that
ambient temperature plays a very important role in energy cost and charging
demand in the electrified transportation system, especially for the autonomous
electric vehicle fleet that has high dynamics of mobility.

6. Conclusions

Energy impact and charging demand have been evaluated under different
ambient temperature for future autonomous electric vehicle fleet. All data-
driven models are derived and studies are performed based on a New York
Nissan Leaf Taxi dataset. One of the fundamental work is a data-driven grid
stochastic energy consumption model with regard to trip average vehicle speed
and ambient temperature. This model aids in emulating heterogeneous energy
consumption behaviors of vehicles in an autonomous EV fleet. The proposed
eco-routing and charging decision making framework has potential to be applied
in autonomous EV fleet to improve transportation efficiency. This decision
making framework is used to simulate driving activities for autonomous fleet.
Results from case studies show a large impact of ambient temperature on energy
consumption and charging demand. Potential impact illustrates challenges to
optimally balance the energy supply from grid and dynamic energy need from
autonomous EV fleet. Proposed methods in this paper provide capabilities
to understand potential challenges and aid in designing promising sustainable
control strategies in future fleet management.
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